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Technique for backward particle tracking in a flow field
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A numerical method to determine the history of particle paths is presented and its application for mixing
quantification is illustrated. When more than one source exists in a flow field, the current technique can reveal
the particle’s identity found in any time and place in the field, by backward tracking its origin. Since the
particle position at a preceding time is not known, the velocity vector is implicit. To resolve this uncertainty,
a three-stage iterative procedure is developed and implemented. The current particle velocity is multiplied by
the time increment and the product is used to estimate the previous time increment particle position. Two
velocity matrices are generated on a mesh around the estimated position. The first matrix is the Eulerian
velocity field interpolated on the mesh. The second matrix contains velocity vectors that point to the current
particle position. A correlation matrix is calculated from the two velocity matrices in order to resolve the actual
particle position in the previous time increment. Determination of the time increments’ size is performed by
checking the maximum of the correlation matrix. The new algorithm was validated using a numerical solution
of the confined twin-jet flow at low Reynolds number. This flow performs a Hopf bifurcation at a Reynolds
number of about 30, therefore chaotic trajectories might exist in the flow. First, the convergence of the
backward particle path to the streamlines in steady flow was demonstrated. Convergence of the particle paths
for various time increments was achieved also at the unsteady two-dimensional confined twin-jet flow. When
the flow has more than one source, the proposed tracking method can be applied to generate complete and
ordered particle source images in any desired position and time in the flow field. Maps of particle sources are
used to visualize the flow patterns and the stretched interface between the two fluid sources. Those maps are
demonstrated as a powerful tool for mixing quantification and can be implemented also for pollution source
detection and many other fluid dynamics applications.
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I. INTRODUCTION

The dynamics of a particle in a flow field is of fundamen-
tal importance to gain better understanding of flow and trans-
port phenomenon. Since the Eulerian frame of reference can-
not provide direct answers for the evolution of a passive
scalar in the flow field, particle tracking techniques are
implemented in many applications of fluid dynamics. For
instance, the investigation of particle path evolution in tur-
bulent flow [1] is vital in the understanding of the physical
mechanism that generates stretching and folding of material
lines.

In recent years, particle tracking techniques have been
vastly utilized for geophysical flows. The applications are
widespread, from following the advection of pollutants in the
atmosphere [2] to the investigation of the interaction be-
tween boundary currents and adjacent circulation regions in
the oceans [3]. Another application that will be reviewed in
this paper is related to the mixing between two or more fluids
at low Reynolds number flows. This application is related to
the emerging field of Lab-on-a-chip, where fast and efficient
mixing in the microscale is essential for improved device
performance [4].

Since mixing mechanisms at the microscale are compli-
cated by the absence of turbulence and fabrication issues,
while being of practical importance, the field of microfluidics
is of great current interest (see, e.g., the recent review pub-
lished by Squires and Quake [5] and the former publications
[6,7] to name a few). In a typical micromixer, the flow must
form chaotic patterns in order that two or more fluids would
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be mixed efficiently [8,9]. Therefore, the flow in those mi-
crochannels could be complex and disordered, although the
Reynolds numbers could be extremely low.

Lagrangian particles’ dynamics are essential since the Eu-
lerian flow field cannot provide details of the fluid interface;
Indeed, most of the published studies in the field of micro-
mixing utilize particle tracking algorithms. Okkels and
Tabeling [10] proposed to follow the evolution of the inter-
facial line between two fluids and to calculate from it a fold-
ing quantity. This quantity, which is a measure of the fluid
interface length, is used as a basis for mapping regions of
enhanced mixing in the parameter space. In order to follow
the interfacial line, high-density particle tracking should
have been implemented in their algorithm. Although this ap-
proach marks the boundaries of the two fluids, it has an
intrinsic difficulty due to the high sensitivity to numerical
errors. In addition, when several flow sources are concerned,
this approach can be time consuming. In another study [11],
the authors calculated Poincaré maps and Lyapunov expo-
nent maps in the entire flow field and related it to stirring. In
both studies, mixing efficiency was indirectly related to vari-
ous chaotic flow characteristics. Therefore, those methods
cannot be directly compared with microflow visualization
experiments [12].

A direct measure of mixing can be obtained by solving the
mass transport equation with the flow equations [13]. How-
ever, this approach is time consuming, simply because the
mesh should be extremely dense to capture the irregular
evolving fluid interface. To overcome this problem, follow-
ing tagged particles from both fluid sources can provide suf-
ficient indication for mixing. This approach was used by
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FIG. 1. An example case for
the advantage of the BPT vs the
FPT. (a) A general flow with three
sources of particles and a region
of interest (). (b) A conceptual ex-
periment, describing a realistic re-
sult of using (b) FPT and (c) BPT
to determine the particle distribu-
tion in ().
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Kang er al. [14], who obtained the map of particle locations,
where every inlet fluid was marked by a different color. The
method was implemented on the Herringbone grooved
mixer, which was presented earlier by Stroock et al. [15].
Although particle location images provide a direct indication
for mixing, the method has drawbacks. In order to generate
high-resolution images at far downstream locations, a huge
number of particles should be tracked, and thus the compu-
tational effort is challenging. This is because not all the par-
ticles from the inlet are tracked at the desired section, even
for relatively long simulation times. Another drawback origi-
nates from the fact that there is no guarantee that all the
space of interest will be occupied by particles. The reason is
the tendency of the ordered particles at the inlet to become
disordered downstream. This fact makes the calculation of
particle statistics difficult to compare between different
cases.

It is therefore concluded that no currently published
method is sufficiently efficient to calculate ordered particle
distribution images, which are required for direct mixing
quantification. The objective of this paper, therefore, is to
develop a backward particle tracking algorithm to achieve
this goal.

To illustrate the benefit of backward particle tracking
(BPT) as compared to forward particle tracking (FPT), con-
sider the problem of tracking particles from multiple sources
(say, smoke from three chimneys) in a known two-

dimensional, time-dependent flow field V(x,7) [as conceptu-
ally shown in Fig. 1(a)]. The flow field could be laminar or
turbulent and could be obtained numerically, experimentally,
or analytically. Our goal is to find the particle’s distribution
in a selected region of interest ) (say, a city) at a selected
time, fg,,- An example of implementing the FPT technique
for nine particles emanating from three sources is presented
in Fig. 1(b). As the particle’s paths might be chaotic, it is
apparent that most of those particles will not provide infor-
mation on the particle’s distribution in () at time #,,. Dif-
ferent selections of particle starting times from the known
sources will not change the result significantly. This is due to
the inability to predict a priori which particle would be
found in Q at t5,,. In addition, particles that incidentally find
their way to () will not be distributed evenly and might cross
Q) at different times. The only way to overcome the random
distribution problem of the FPT is to track a vast number of
particles and anticipate that some of them will end up at €} in
time #g,,. It is concluded that the FPT technique would ob-
tain inferior results in determining the particle’s source dis-
tribution at ). These deficiencies could be solved by using a
BPT technique.

By using a BPT technique, we can select ordered points in
Q) at time f5,,,; and find their source, as presented in Fig. 1(c).
Those points could be selected to be ordered in any desirable
manner as they can represent points of interest in a city near
a contamination source. After the source of the particle is
found, it can be tagged (or colored) and the particle distribu-
tion in () can be determined. The benefit of using BPT over
FPT is apparent. First, it allows to track only those particles
that would be located in the points of interest in () at time
tsina- 10 this case, the required calculation effort to be made
would be significantly reduced with respect to FPT. In addi-
tion, the resolution of the resultant particle’s distribution can
be selected by the user, therefore a complete and ordered
particle image could be obtained in any required resolution.
This ability is important for mixing application, since the
resulting particle distribution images can be directly com-
pared with images that were acquired by a camera in a col-
ored mixing experiment.

In the following sections, the currently known FPT
method will be reviewed and utilized as a reference to com-
pare and test the characteristics of the BPT method.

II. FORWARD PARTICLE TRACKING ALGORITHM

Algorithms for FPT in a flow field are frequently used by
researchers in fluid dynamics, as reviewed above. The track-
ing procedure can be implemented only if the Eulerian ve-
locity field is known a priori in both time and space. The
Eulerian velocity field can be obtained by various tech-
niques, for instance flow field measurements such as time-
resolved PIV (particle image velocimetry), numerical simu-
lations, or from an analytic solution of the flow equations. In
any case, the basic approach to track particles in the flow is
to select the initial time and position in the flow and follow
the particle path by solving the state equation (2.1a) using
the initial condition (2.1b),

() = VG@®),0), (2.1a)

)?(l(]) :)?0, (21b)

where x(¢) is the particle position vector as a function of

time, ¢, in three dimensions and V(x(¢),f) is the Eulerian
velocity field. The solution of Eq. (2.1a) can be obtained by
integration in time to determine the position of the particle at
time ¢,, in the form:
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x(t,) = f c&(f(t),t)dl+f(to), (2.2)

where 1,7, are the initial (previous) and current times, re-
spectively. Note that by using this state equation, it is implied
that the particle is a passive scalar in the flow, i.e., this equa-
tion follows the evolution of mathematical points in the flow
and neglects the particle inertia and diffusion effects.

Equation (2.2) can be solved numerically using various
numerical schemes. The explicit Euler method of integration
is the simplest integration technique, and will lead to rela-
tively large integration errors; however, it is currently se-
lected in order to simplify the comparison between the for-
ward and backward particle tracking techniques. (Other
methods, such as the fourth-order Runge-Kutta scheme,
should be used in order to reduce the integration error.)
Implementing the explicit Euler method to Eq. (2.2) yields
the position of the particle at the next time step, #;., in the
form:

X1 = X+ V(X 1) dty, (2.3)
where the index k represents the current known time step, #;.
After discretization, the tracking algorithm is performed in
three stages. The first stage is to select the time increment,
dt;, of the integration.

Since both forward and backward particle tracking tech-
niques should work at any flow fields, a comment should be
made regarding the selection of the time increment in light of
the flow nature—laminar or turbulent. For any flow, the time
increment (dt;) should be small enough, such that the Eule-
rian flow field does not significantly change between the cur-
rent and next time. In addition, it should be monitored that
with the dt;, a particle does not progress in space through
significant velocity gradients. For laminar flow fields, the
characteristic time and spatial scales are physically deter-
mined by the solution of the Eulerian flow field. For ex-
ample, in a laminar flow behind bluff body, the velocity field
has a dominant frequency and mode shape that characterizes
the flow. This is not the case when turbulent flow is consid-
ered.

Turbulent flow fields are characterized by multiple scales
in time and space. Since turbulent flow fields could not be
solved analytically, the numerical or experimental grid,
which is used to resolve the flow, acts as a low-pass filter to
the high frequencies (small scale structures). Therefore, the
time increment of the tracking algorithm for turbulent flows
should be selected to capture the finest resolved scales. When
using an adequate time increment, the particle dynamics will
not be directly affected by the large-scale structures, and
from a local point of view the flow can be regarded as lami-
nar. Therefore, for both laminar and turbulent flows, the se-
lection of the integration time step is crucial to obtain real-
istic particle paths and there is no mathematical difference
between laminar and turbulent flows. This is true for both
forward particle tracking and for backward particle tracking
techniques.

In the second stage, the velocity of the particle is interpo-
lated in space and time from the Eulerian flow field. The
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interpolation method can be, for instance, linear, cubic, or
any other method. The third and final step is to calculate the
displacement of the particle, dx, from the interpolated veloc-
ity and the selected dr; by substitution into Eq. (2.3). The
algorithm then returns with the new particle location, X, to
the first stage of the algorithm for the next time step calcu-
lation.

It should be noted that many publications and current
studies are focused on finding solutions to reduce the nu-
merical errors, which are associated with particle tracking
[16]. The first source of error is the solution of the Eulerian
flow field. If solved numerically, it transfers the solution er-
rors to the particle paths. The second source of error is the
interpolation method in time and space, which is used to
extract the particle velocity from the discrete Eulerian veloc-
ity field. This error is eliminated when the flow field is
known analytically. The third source of error is related to the
numerical integration scheme, which is used to integrate Eq.
(2.2). Different numerical schemes will lead to different par-
ticle paths, even in flows that have analytical steady solu-
tions [17]. The last error results from the selection of the size
of the time increment, as discussed previously. The weak
point of all tracking algorithms is the accumulation of all the
above-mentioned errors as the particles progress in the flow
field.

The currently developed BPT algorithm is based on the
same numerical procedures as the current application of the
FPT methods. However, it requires an additional stage with
respect to the FPT, therefore one cannot expect to retrieve
more reliable results in terms of minimizing integration error
with the BPT algorithm. The following section presents the
BPT technique, which is implemented using the simplest nu-
merical scheme, the explicit Euler integration method. As
stressed before, this integration method is not optimally
suited for this application, but it will serve as a basis to
simply explain the BPT technique and compare it to the FPT
approach. Implementation of the advanced numerical inte-
gration scheme, the fourth-order Runge-Kutta, is demon-
strated in the Appendix.

III. BACKWARD PARTICLE TRACKING (BPT)
ALGORITHM

Consider a particle that is located at a given position, X,

and time, #;, in a known Eulerian velocity field, V (where i
represents the current time step). It is required to follow the
trajectory history of this particle throughout the flow field.
The equation to be solved is again Eq. (2.2). After discreti-
zation using the explicit Euler integration method, the result
is identical to that of Eq. (2.3). However, in this case we seek
the value of the first term on the left-hand side of Eq. (2.3).
Rearranging Eq. (2.3), we obtain the following equation
from which we can calculate the current particle location:

Xy =X — VX1, 150 dt;, (3.1)

where the index i is substituted instead of k and it represents
the currently known time step. Index i is progressing forward
as time is decreased, i.e., at the starting point of the integra-
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FIG. 2. An example of (a) the interpolation mesh and nomenclature, (b), (c) the resulting matrices f{aﬁ and éaﬁ with the circle indicating

the location of the max correlation of (d) the correlation matrix Reop.

tion, i=1 is the final time. Equation (3.1) cannot be solved
explicitly, since knowledge of the particle velocity at the
previous step, i+ 1, is required. To solve Eq. (3.1), we calcu-
late the particle position x;,; and the velocity vector

V(xX;,1,;+;) using an iterative method that contains three
stages: estimation, correlation, and validation.

At the estimation stage, a time increment dt{ is selected to
be small enough according to the criteria described in Sec. II.
The superscript j represents the current iteration step in the

process. Then, by using the current velocity, V(;,t,), an es-
timation of the particle location is obtained in the form

ij—{l = )?i - ‘—}('fi’ tl)dt{, (32)

where the asterisk represents the estimated previous particle
position. The estimated location, x,/,, narrows the space for
the search of the actual particle position to a specific region
in the flow.

At the correlation stage, an interpolation mesh W is con-
structed around the estimated location, x,/;, as illustrated in
Fig. 2(a) (for clarity, only two dlmensmns are presented).
The meshed volume is a cube centered on X/, with a total

edge size that is proportional to the distance between x; v 4

= V(xi,ti)dt{ and x;, with a proportionality factor \. The ma-
trix W, which is selected with initial dimensions n Xn X n,

contains n* grid points with the position coordinates %ﬁy (
a, B,y are indexes of the array in three dimensions). On P,
two matrices containing n X n X n velocity vectors are gener-

ated. The first matrix, A{x,gy» is the interpolated Eulerian ve-
locity vector matrix on the mesh. Each one of the vectors in

the matrix Aaﬁy would lead a particle from its location on the
1nterp01at10n mesh to the vicinity of x;. An example of the

matrlx Al s presented in Fig. 2(b). The second matrix,

aBy
B upy 18 defined by the following equation:

>,

_ Wa[z’z -, i
Baﬁy PV (3.3)
14
B{l 5, contains artificial velocity vectors, all of which are cal-

culated such that it is directed exactly towards x;. Moreover,
according to Eq. (3.3), the magnitude of the vectors in B] "By
are such that they will lead a particle from W to x; with a
convection time of d# exactly [shown in Fig. 2(c)].

The idea behind the generation of the two above-
mentioned matrices is to compare the two vector matrices in

order to find a real velocity vector in A/, , that has the high-
est correlation to an artificially calculated velocity vector in

B{xﬁy' This is done by correlating the two matrices using the
following equation (the summation convention is not valid in
this case):

J Awﬁv ab’v

(3.4)

max{|Aaﬁy aﬁy|}

The values contained in matrix R’ are between —1 and +1,
where —1 represents opposite Vectors with the same magni-

tude between corresponding cells in AJ , and BOIM, and +1
represents identical vectors. The 1ndlces a B, v, which yield
the highest correlation, max(R’ aﬁy) define the requested po-
sition vector xljl for iteration j. An example for the correla-
tion matrix, R/ apy 1is presented in Fig. 2(d). When the
max (R’ aﬁy) is exactly +1, the BPT is converged to the FPT,
and both methods should track the same paths, when using
the same time increment. Otherwise the BPT will contain an
additional error, which can be minimized by selecting a
minimal required value, R, for max (R’ aﬁy) If the value
max (R’ apy) 18 higher than R, the procedure is completed
and the actual position at the previous time step, i+1, is
determined as )?Hl—x{ .1~ Otherwise, the procedure continues
to the next iteration. At the next iteration, the value of the
time increment is halved with respect to the previous time
increment according to the formula d#/*'=0.5d¢ and the
mesh dimensions are doubled in each direction in the form
2n X 2n X 2n. Thus, for the next iteration, the search region
is twice as close to x;, has eightfold smaller search volume,
and has twice as high mesh density, hopefully to obtain
higher maximum correlation. This iterative procedure is ter-
minated when the requested correlation value R, is achieved.

After the position of the particle, x,,,, is determined, the
next time step is calculated with the same procedure and
parameters until the requested time or position of the particle
is attained. When the goal of the particle tracking is mixing
analysis, the particle source can be detected and an attribute
can be assigned to this particle (for example, a specific
color).

To validate the BPT algorithm, it was implemented in
MATLAB (Mathworks, Inc.). Only the BPT iterative stage was
tested for convergence, since it was the only additional stage
with respect to the FPT algorithm. This was performed by
running three different tests. The goal of the first test (test
case 1) is to find the minimal required time increment such
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FIG. 3. The plain confined twin jet geometry and its boundary
conditions.

that the particle paths are converged to the flow streamlines
in a steady flow. This test was performed without the valida-
tion stage of the interpolation algorithm. Therefore, the time
increment was held fixed. The purpose of the second test
(test case 2) was to confirm that the ordered particle maps
obtained in an unsteady flow will converge as the time incre-
ment is decreased. The aim of the third test (test case 3) is to
compare directly the BPT method with the FPT method. This
is done by tracking particles backward from an ordered array
at downstream location to their source and then tracking
them forward from the same place where the BPT tracking
ended. For any particle, the error between the BPT starting
point and the FPT end point will be calculated. If the itera-
tive stage of the algorithm is efficient, those two points
should converge.

The errors caused by the numerical scheme, the interpo-
lation method, and the Eulerian flow field are not considered
in this validation. Ignoring those errors could be justified by
the existence of the same errors also in the FPT and by the
purpose of the current study, i.e., the comparison of the for-
ward and backward particle tracking algorithms.

IV. ALGORITHM VALIDATION USING THE PLAIN
CONFINED TWIN JET FLOW

To validate the BPT algorithm and to demonstrate its ad-
vantages, it was implemented on the plain confined twin-jet
flow. This flow was selected since it has a potential for
micro-mixing applications and it is sufficiently complex in
order to develop chaotic particle paths. The selected Eulerian
flow field was obtained by numerical solution of the plain
confined twin-jet flow [18]. The geometry and the boundary
conditions are shown in Fig. 3. The time-dependent, two-
dimensional, incompressible Navier-Stokes equations were
solved numerically using a commercial code (FEMLAB™,
Comsol Inc.) with approximately 20 000 grid points. The

code resolved the Eulerian velocity field V(x,7) and the pres-
sure P(x,t), which is not utilized in this work. The software
code is based on the finite-element method, and the current
results were validated numerically versus Soong et al. [18]
and experimentally in Nahum et al. [19]. The selected geo-
metrical parameters were S/H=0.7 (the ratio between jet
separation S and channel width H) and D/H=0.07 (the ratio
between the jet width D and H). With this geometry, the flow
undergoes a Hopf bifurcation for the above geometry at a
Reynolds number, R,, of 30, where R,=V,D/v, V; is the

PHYSICAL REVIEW E 74, 016701 (2006)
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y/H

x/H
0 0.05 0.1

015 WY,

FIG. 4. Normalized mean velocity vectors and contour map (10
levels) of the vertical velocity standard deviation (V)',) for (a) R,
=20, steady flow and for (b) R,=30, periodic flow (CFD generated
flow field).

mean jet velocity, and v is the kinematic viscosity. From
nonlinear dynamics theory, particles in this flow can perform
chaotic paths, since the flow is two-dimensional and time-
dependent. From a Lagrangian viewpoint, the particle paths
in this flow can be as complex as in a turbulent flow. This
makes the confined twin-jet flow suitable as a benchmark
problem to validate the BPT algorithm.

Two cases of this flow are currently considered. The first
is for steady flow at the subcritical R,=20, and the second is
for periodic flow at the critical R,=30. Examples of both
flow fields are presented in Fig. 4. For R,=20 [Fig. 4(a)], the
flow is steady and symmetric, with a central recirculation
zone, showing two counter-rotating vortices, and two sym-
metric recirculation zones near the upper and lower entrance
corners. As the Reynolds number was increased to R,=30,
the flow became periodic, but remained symmetric in the
average sense.

The velocity vectors [arrows in Fig. 4(b)] and the vertical
velocity standard deviation (STD) are presented in Fig. 4(b)
(the STD is shown as a gray level contour plot). It is shown
that most of the fluctuation energy is concentrated near the
jet interaction region. Those fluctuations are responsible to
the transfer of momentum between the jets, and therefore to
enhanced mixing. The Strouhal number, §,=fS/V;, associ-
ated with this flow is §,=0.07, where f is the dominant fre-
quency of the vertical velocity fluctuation, V)’,.

It is advantageous to demonstrate the BPT and mixing
analysis with the confined twin-jet flow because no other
method known to the authors could be used to construct
particle images for this flow. For example, following the in-
terface between the two fluids could not be performed since
the interface between both jets is not defined. The recircula-
tion region contains particles from both inlets, and their iden-
tities are not known. Another method of solving the flow and
mass equation simultaneously requires that the recirculation
region material will be defined. If not, the flow and the mass
equations should be solved from an initial empty channel
state, until the mean (in the time domain) mass distribution at
the recirculation region(s) will be constant. This approach
could require a significant effort and time to obtain the de-
sired results. Therefore, only with the BPT could ordered
particle maps of this flow be attained for the confined twin-
jet flow.
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FIG. 5. The selected location of the mesh used for code valida-
tion shown with respect to the channel. Particles’ sources found at
upper or lower inlets are marked with black or white, respectively.

V. ALGORITHM VALIDATION

For the first test (test case 1), 100 ordered particles were
tracked back to find their source in the steady flow field at
R,=20. The particles’ initial location was on a square mesh
centered on x/H=3.75,y/H=0, with an edge length of 0.5H
(see Fig. 5). Particles originating at the upper or lower inlets
were tagged with O (black) and 1 (white), respectively. The
value 0.5 (gray) was assigned to particles for which the al-
gorithm did not find their source for the entire duration of the
analysis. This case occurred when a particle was trapped in
the entrance vortices region [as shown in Fig. 3(a)] or
crossed the entrance wall. From the tracking results, the
square mesh was mapped with the three colors representing
the particle sources.

Different particle maps were obtained for five different
time increments. The BPT parameters were selected to be
A=0.33 and n=100. The time increment scaling was t*
=tV,/§. The scaling factor §/V; designated the time scale of
the twin jet period at the critical R,. Figure 6 presents the

At'=0.4

At=0.2

At=0.08

L ' L

At'=0.04, 0.02

FIG. 6. Ten backward tracked particle paths starting at x/H=4
for different time increments, as indicated above each chart (R,
=20, steady flow field).
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At=04 At=0.2 At™=0.08 At'=0.04, 0.02
x/H
(a) (b) (C) (d)

FIG. 7. A comparison between four particle maps (10 by 10
particles) as the time increment decreases from A*=0.4 and 0.2 as
indicated above the charts, R,=20 (steady flow).

particle paths in the steady flow field, R,=20, tracked back-
wards from a selected section at x/H=4. Since the flow field
was steady, the particles’ paths should converge to the
streamlines of the flow. It is shown in Figs. 6(a) and 6(b) that
for the two largest time increments, Ar*=0.4,0.2, two par-
ticles were trapped in the entrance vortices between the two
jets, therefore they do not follow the streamlines that origi-
nate at the jet entrances. As the time increment was de-
creased to Art=0.08 [Fig. 6(c)], none of the selected par-
ticles were trapped in the entrance vortices. However, one of
the particles missed the exact location of the jet entrance.
When the time increment was decreased further to Ar*
=0.04 or less, all particle origins were successfully deter-
mined.

The particle maps for R,=20 flow field are presented in
Fig. 7. As Ar* was decreased, the number of particles whose
sources were found was increased. To obtain a quantitative
measure of the accuracy of the particle paths calculated by
the BTP algorithm, a comparison between the particle paths
and the streamlines was performed.

The mean absolute distance, {(d), between the particle path
and the associated streamline was calculated along the path
of the particle for different time increments, Ar*. This was
performed for all the particles in the map and the result was
normalized to the streamline length, /,. Figure 8 presents the
average of the normalized mean distance between the par-
ticle path and the associated streamline, {((d)/l,), as a func-
tion of the time increment, Af*, with the maximal and mini-
mal values shown as error bars. It was shown that as Ar* was

-1

10 " " i T

-
On
o
T
i

<<d>/lp>
3,

IS

N
On
:

10

0 0.1 0.2 0.3 0.4
Att

FIG. 8. The average of the normalized mean absolute distance,
(d), between the particle path and the streamline vs step size (aver-
aged over 100 particles). Error bar indicates the minimal and maxi-
mal values of ({(d)/1,), with [, being the streamline length.
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At'=0.6

(d) At=0.06

(e) AF=0.03

FIG. 9. Ten backward tracked particle paths starting from x/H
=4 for different time increments as indicated above charts (R,=30,
periodic flow).

decreased, the particle path distance from the streamline was
decreased on the average, i.e., the particle paths converged to
the streamlines. It was also observed that the variation of the
mean distance was significantly reduced with the increase in
Ar*, which is a result of the detection of all particle sources
as Art was decreased. It is clearly shown that Ar"=0.08 is
the optimal time increment for the current test conditions.

For test case 2, the particle paths in the flow field at R,
=30 were tracked using the same geometrical parameters as
for R,=20. Since at R,=30 the flow field was periodic, the
particle paths were not expected to follow the streamlines of
the flow. This implies that no-source particles could have
been found in this flow, since the selected total analysis time
could have been shorter than the time it takes a certain par-
ticle to be convected through the entire channel. In Fig. 9,
the particle paths for 10 evenly spaced locations across the
channel (x/H=4) are presented. It was shown that as Ar*
was decreased, the number of no-source particles was de-
creased, and the particle paths for Ar*=0.06 closely resemble
the case of Ar*=0.03. Although in this cross section and for
the Ar* used all particle sources were found, it might not
always be possible to detect all particle sources since the
trajectories might be chaotic.

In Fig. 10, six particle maps are shown for the R,=30
flow field. It was observed that as the time increment was
decreased, the particle maps preserve the same structure. To
quantify the convergence, the particle maps were compared

PHYSICAL REVIEW E 74, 016701 (2006)
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FIG. 10. A comparison between six particle maps (10 by 10
particles) as time increment decreases, as indicated above charts,
R,=30 (periodic flow).

to the map with the smallest time increment, i.e., Arf
=0.015. Figure 11 presents the percentage of particle mis-
match as a function of the time increment. It was observed
that more than 90% of the particles were obtained correctly
for Art=0.02 with respect to the Ar*=0.015 map. It should
be noted that one could not expect to achieve perfect match-
ing between the two maps where chaotic trajectories exist.
From the above results it was decided to select Ar*=0.02 as
the maximal time increment allowed for the mixing analysis.

In test case 3, 100 particles are tracked backward and
forward in the flow field to find the position error. The ex-
pected error originates from the additional iterative stage in
the BPT algorithm. In order to compare the two algorithms
without bias, the same time increments that were used in the
BPT stage are used for the FPT stage. If the particles will
return to the same point, the BPT generated particle path will
follow exactly the FPT results. It should be noted that al-
though we expect the BPT and FPT particle paths to con-
verge, there is no way to utilize the FPT method to retrieve
ordered particle maps. The FPT algorithm can be used in this
case only after the BPT was performed. This is because be-
fore the BPT is implemented, one cannot select 100 points
for the FPT, which their paths will end up in an ordered
manner at the required locations.

70

60}
501
40+
3071

% mismatch

201
10}

0 2 I 1 0
10° 10 10

+

At

FIG. 11. Percentage of mismatch particles found in various par-
ticle maps with respect to the Ar*=0.015 map (R,=30, periodic
flow).
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FIG. 12. Validation of the BPT algorithm with respect to the
FPT algorithm by tracking 10 evenly spaced particles from x/H
=1.9 to their source and back (R,=30, periodic flow).

The threshold for the maximum correlation, R., was se-
lected to be 0.99, and the interpolation mesh size, n, was
selected to be 100. The simulations were performed for dif-
ferent sizes of W, with N=0.05 to 0.33, to determine the
effect of N on the accuracy of the BPT. The confined twin-
jets flow at R,=30 was selected for test case 3. An array of
10 by 10 particles with edge size of 0.5H, centered at x/H
=1.75, was used for this test.

A selected example of 10 particle paths is shown in Fig.
12 for A=0.33. It can be qualitatively seen that the 10 se-
lected particle paths from the BPT simulations are identical
to the FPT simulation paths. A quantitative analysis was per-
formed by calculating the distance ¢ of the final end point of
the FPT with respect to the starting point of the BPT. This
distance should be zero if the error of the iterative stage of
the BPT is zero. The solid line in Fig. 13 shows the normal-
ized mean distance (e)/H of the particles versus the selected
N\, and the error bars indicate the maximal and minimal ob-
tained values. The number above the error bars indicates the
number of particles with {¢)/H of more than 0.05. Those
particles are found to be also the same particles for which the

10 :
—o— 100%
O N 8- 95%
B
A 10
v
107
10°
0 0.4

FIG. 13. The normalized mean distance (g)/H between the
starting position of the BPT to the final position of the FPT of the
same particle (R,=30, periodic flow).
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BPT algorithm did not find their sources. It is shown that for
A=0.2-0.25, the error is minimized. Although five particles
were diverged significantly from the BPT path, the value of
the normalized mean error is less than 0.01. The dashed line
represents the error where the 5% of the most divergent par-
ticles are excluded from the calculation. It can be seen that in
this case the mean error is reduced to 0.001. Therefore, 95%
of the particles were found, with good accuracy, to be on the
same path for the BPT and the FPT algorithms.

VI. MIXING ANALYSIS

As indicated before, mixing quantification is vital for the
design, fabrication, and characterization of efficient micro-
mixers. The utilization of the BPT algorithm for the confined
twin-jet micromixer was performed for the flow case at R,
=30. Maps of 50 by 50 particles were obtained across the
flow with edge sizes of 0.8H in each direction. The selected
edge size (0.8H) was sufficient for mixing analysis since
94.4% of the mean flow passes through this region. In the
current tracking analysis, the BPT validation stage (the third
stage in the algorithm) was implemented, thus the time in-
crement was not kept constant. The maximum value of the
correlation matrix was checked, and if it was found to be
smaller than R-=0.99, the next iteration was performed with
half the time increment.

From the analysis of test case 2, the average number of
steps required for a particle to reach its origin was calculated.
In the mixing analysis, the algorithm was terminated when
the number of steps reached ten times this value. The aver-
age simulation time for all particles was r"=25. This was
performed in order to increase the probability to find the
particle source even if it was trapped in the vortices region.
In the case in which the algorithm did not find the particle
source, the particle was tagged with the value 0.5 (gray).
Therefore, this tag was considered as a perfectly mixed fluid
cell. The rationale behind this assumption was that such a
no-source particle resided in the channel, on average ten
times longer than other particles, therefore there is a higher
probability of mixing.

Figure 14 shows the particle maps of size 0.8H by 0.8H at
various downstream locations. It can be seen that the inter-
face between the two colors was elongated with respect to
the expected straight line when the flow is steady at the
lower Re. Mixing is also observed to be qualitatively im-
proved as the fluids move further downstream.

The particle maps were utilized to quantify mixing as a
function of scale by the mixing variance coefficient (MVC)
method [20]. The particle maps were divided to s by s cells,
where s is smaller than the number of particles on the map
edge. For every cell, the mean particle value, P;, was calcu-
lated, where i represents the ith cell. Perfect mixing in a cell
was achieved when P;=0.5, and no mixing was defined when
P;=0 or P;=1. The MVC for scale 1/s was defined as:

1
Thix(5) = ?22 (P;—0.5)?. (6.1)

From this definition, the MVC was bounded between zero,
indicating perfect mixing, and 0.25, indicating no mixing.
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FIG. 14. Particle maps containing 2500 particles which were obtained at different streamwise positions in the flow (periodic flow, R,
=30), as indicated by the ordinate. Black or white particles are presenting particles that originated from the upper or lower jets, respectively.
Gray indicates particles whose source was not identified. In most cases, they are trapped at the vortices region between the entrance jets.

Figure 15 presents the MVC as a function of the scale, 1/s,
for the maps presented in Fig. 14. As expected, it is shown
that for all locations, as the scale was decreased, the MVC
was increased. This is understood when considering the size
of the structures in the particle maps. In addition, mixing was
improved for all scales with respect to the reference map
results. It is shown that the MVC was not significantly
changed as a function of x/H, therefore the mixer length can
be reduced while keeping the same mixing performance. In
summary, the combination of the particle maps with the
MVC method illustrates the benefits of using the backward
particle tracking for mixing analysis.

VII. CONCLUSIONS

A technique for backward particle tracking (BPT) in a
flow field was developed and validated. The ability of the
BPT technique to determine the complete particle distribu-
tion in any place in the flow was demonstrated. Furthermore,
the BPT technique can identify the location of a contamina-
tion found anywhere in the flow field, using the flow field
evolution. An iterative numerical method to find the location
and velocity of a particle at previous time steps was imple-
mented. Using the confined twin-jet flow field at R,=20
(steady flow), it was found that the backward tracking algo-
rithm has converged to the streamlines when a sufficiently
small time increment was used. The particle paths were also

0.15

0.1

MVvC

0.05 -~

0 5 10 15 20 25
Number of cells on edge, s

FIG. 15. Mixing variance coefficient (MVC) as a function of the
number of cells for three different x/H locations in the channel.
Perfect mixing is achieved when the MVC is 0.

converged with respect to the smallest time increment, when
the flow was periodic at R,=30. Mixing analysis was per-
formed using the resultant particles’ maps of the BPT algo-
rithm. Particle maps at selected locations in the flow field
were successfully obtained. Those maps illustrated that,
when R,=30, the patterns of the particles become irregular,
with elongated interface with respect to the steady flow. The
above findings were quantified by a simple mixing efficiency
criterion which could be used to design efficient mixing de-
vices. It is concluded that the BPT can be implemented to
observe the evolution of fluid interfaces, and therefore can be
compared to experimental results in a more direct manner
than forward particle tracking algorithms.

APPENDIX: ADVANCED NUMERICAL SCHEME

A fourth-order Runge-Kutta (RK4) numerical scheme can
replace the direct Euler integration method. The advantage of
using RK4 with respect to the direct Euler integration
method was investigated thoroughly in many studies and is
not within the scope of the current paper. The BPT technique
does not alter the characteristics of those methods.

Consider the discretization of Eq. (2.2) using the RK4
scheme (the index k is increasing in time),

- R .
Xpp) =X+ g(r1+2r2+2r3+r4), (A1)
where
P = V@t di.
7y = V(E, + 0.57,,t, + 0.5dt,, ) dty,
Fy= ‘7()71( +0.57,,t; + 0.5dt,,)dt iy
rya= ‘-}(fk"' Pty + dty )dtyy . (A2)

In our case, we are interested in finding the position at the
previous time increment, fk, from the information from the
next time increment. Rearranging the equation and substitut-
ing an index, which is decreasing in time, i, instead of k, we
yield
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1. - .-
Xip] =X;— g(rl + 25+ 2r3+ 1y), (A3)
7= V(X ti0)dt;,
7_')2 = ‘-}()?H_l + 0'5;l’ti+1 + 05dt,)dt,,

7_')3 = ‘-}(il?] + 0'5;2’ti+1 + 05dt,)dtl,

PHYSICAL REVIEW E 74, 016701 (2006)

;4 = ‘-}(il#l + ;39li+l + dtl)dtl (A4)

The calculation of the vectors 7y, 75, 73, and 74 cannot be
performed explicitly. As described in Sec. III, an implicit
iterative stage should be utilized to find x;,;. 7; is calculated
on the interpolation mesh, around the estimated particle po-
sition. Then a series of substitutions in Eq. (A4) is performed
to retrieve r,,75,74. The obtained values are substituted in
Eq. (A3) to find x;,,.
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